Simple Parametric Models for Generating Stable and Efficient Margin Requirements for Derivatives

Carol Alexander*
Andreas Kaeck
Anannit Sumawong

University of Sussex
*c.alexander@sussex.ac.uk

Thematic Semester, Paris

November 2015
Outline

▶ **Margining Process:**
Players, challenges, regulations and SPAN

▶ **Margin Model:**
Risk metric (MTL) and parameter-based margin rules

▶ **Econometric Methodology:**
Calibration, backtesting, margin model selection

▶ **Empirical Results:**
On WTI and comparison with SPAN
Players in the Futures Market

- Regulators
- Central Counter Parties (CCP)
- Central Banks
- Speculators
- Clearing Members
- Hedgers
- Smaller Clients

Recommendations

Law

Margin (+)
Margin (-)
Margin (-)
Margin (?)

Supervision

Thematic Semester, Paris
Institutions Registered with CCP

CCP receives margins from three types of registered counterparties

▶ **Clearing Members:**
 - Members receive net positions from clients (small speculators, hedgers, brokers)
 - Margin required from clients is typically higher than margin paid to CCP
 - The whole margining process is supervised by the CCP

▶ **Large Hedgers:**
 - Large institutional investors

▶ **Large Speculators:**
 - Higher margins
Role of Central Counter Party (CCP)

- Buyers and sellers deposit *initial margin* on entering trade agreement
- Portfolios MtM daily and price evolution tracked
- Margin call initiated when maintenance margin falls below bound given by daily *maintenance margin* calculation
- Default on call \Rightarrow CCP takes financial obligation of portfolio
- CCP has recourse to additional capital via *default waterfall*
Default Waterfall

- After default on maintenance margin call, CCP utilises capital in this order:

1. Initial margin
2. Default fund contributions from defaulting clearing member
3. A tranche of the CCP’s own capital
4. Default fund contributions from surviving clearing members
5. Unfunded default fund contributions
6. Additional CCP capital
Regulators Views on CCP Margins

- Are CCPs now ‘’too big to fail’’

- Pro-cyclicality \Rightarrow Fear of tax-payer bailouts
 \Rightarrow Focus on stability of margin requirements

- Are margins sufficiently prudent? And is the default waterfall adequate?

- \Rightarrow CCPs required to integrate margin model within enterprise-wide risk management system
New Margin Regulations

- **Dodd-Frank Act (2010)**
 - Requirements for OTC trades to move to CCPs
 - Strict requirements on margins for some derivatives
 - e.g. Margins for un-cleared swaps must cover the 10-day 99% VaR

- **EMIR (2013)**
 - European Market Infrastructure Regulations
 - Strict requirements on *all* OTC derivatives:
 - Portfolio margining, liquidity/concentration adjustments by capital type, stress testing, backtesting, default fund contributions, etc.
 - e.g. Exchange-traded derivatives margins must cover the 2-day 99% VaR
Standard Portfolio Analysis of Risk Software (SPAN)

- CME (1988). Now used by largest exchanges, e.g. ICE
- Lacks firm econometric foundation: hundreds of parameters require re-setting daily
- Margin requirement = worst case loss over 16 scenarios
- Technical documents difficult to assess. Also, historical series of SPAN margins is difficult to recreate exactly - [Kupiec and White, 1996]
- Historical data on parameters:
 - https://www.theice.com/clear_europe_span.jhtml for ICE products and
Obtaining SPAN Margins

- Some historical movements on CME SPAN:

- ICE SPAN software free download and twice-daily parameter files here:
 https://www.theice.com/clear_europe_span.jhtml

- End-of-day historical parameter files downloaded January 2009 to December 2014 ⇒ daily time series of margin movements for any product (WTI crude oil futures in this case)
SPAN Margins: WTI Crude Synthetic 30-day

Daily P&L on WTI 30-day Contracts (grey)
ICE (blue) and CME (green) SPAN margin movements Jan 2009 – Dec 2014.
Exchange Clearing Activities

<table>
<thead>
<tr>
<th>Rank</th>
<th>Exchange</th>
<th>Jan-Dec 2013</th>
<th>Jan-Dec 2014</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CME Group</td>
<td>3,161,476,638</td>
<td>3,442,766,942</td>
<td>8.90%</td>
</tr>
<tr>
<td>2</td>
<td>Intercontinental Exchange</td>
<td>2,558,489,589</td>
<td>2,276,171,019</td>
<td>-11.0%</td>
</tr>
<tr>
<td>3</td>
<td>Eurex</td>
<td>2,190,727,275</td>
<td>2,097,974,756</td>
<td>-4.20%</td>
</tr>
<tr>
<td>4</td>
<td>National Stock Exchange of India</td>
<td>2,127,151,585</td>
<td>1,880,362,513</td>
<td>-11.60%</td>
</tr>
<tr>
<td>5</td>
<td>BM&FBovespa</td>
<td>1,603,706,918</td>
<td>1,417,925,815</td>
<td>-11.60%</td>
</tr>
<tr>
<td>6</td>
<td>Moscow Exchange</td>
<td>1,134,477,258</td>
<td>1,413,222,196</td>
<td>24.60%</td>
</tr>
<tr>
<td>7</td>
<td>CBOE Holdings</td>
<td>1,187,642,669</td>
<td>1,325,391,523</td>
<td>11.60%</td>
</tr>
<tr>
<td>8</td>
<td>Nasdaq OMX</td>
<td>1,142,955,206</td>
<td>1,127,130,071</td>
<td>-1.40%</td>
</tr>
<tr>
<td>9</td>
<td>Shanghai Futures Exchange</td>
<td>642,473,980</td>
<td>842,294,223</td>
<td>31.10%</td>
</tr>
<tr>
<td>10</td>
<td>Dalian Commodity Exchange</td>
<td>700,500,777</td>
<td>769,637,041</td>
<td>9.90%</td>
</tr>
</tbody>
</table>

The ten largest exchanges clearing futures and options contracts.
Summary of Challenges for Exchanges

- Competitive Environment
 - How to fund large-scale risk management system?
 - Conflicts between EURO and US recommendations?

- Unclear recommendations
 - Some EMIR (2013) articles still under debate

- SPAN requires updating Or replacing?
 - How to build a parsimonious margin model that is:
 - Based on sound econometric principles? What principles?
 - Yields prudent and stable and competitive margin re-sets
 - Integrated within the enterprise-wide risk management system
Margin Requirement Literature

- **Prudential Margin Requirements**: Should cover all possible price movements
 [Figlewski, 1984], [Booth et al., 1997], [Cotter and Dowd, 2006]

- **Efficient Contract Design**: Setting margins and price limits simultaneously
 [Brennan, 1986], [Fenn and Kupiec, 1993], [Shanker and Balakrishnan, 2005]

- **Rules-Based Models**: Risk metrics used as bounds for margin re-sets
 [Chiu et al., 2006], [Lam et al., 2010]
Research Questions for our Parsimonious Margin Model

- What’s the best risk measure for a rules-based margin model?
- How can the model incorporate challenges for exchanges?
- How to formulate a **calibration procedure** which produces an **optimally stable margin** which balances two aims:

 (a) small and frequent margin re-sets are operationally costly for investors and exchanges, but they avoid pro-cyclicality in financial markets, vs

 (b) fewer, larger re-sets can produce stable margins over time, but they are highly risky in this competitive environment
Outline

- **Margining Process:**
 Players, challenges, regulations and SPAN

- **Margin Model:**
 Risk metric (MTL) and parameter-based margin rules

- **Econometric Methodology:**
 Calibration and backtesting of two-stage margin model

- **Empirical Results:**
 On WTI and comparison with SPAN
Two-Stage Margin Model

Stage 1: Risk Metric (MTL) Estimation
Based on calibration to portfolio returns

At set-up, a selection of competing risk models for estimating MTL are **calibrated** and **back-tested** and the ‘best’ model selected (e.g. Student-t EGARCH).

Stage 2: Margin Rule Parameters Calibrated
Based on historical series of ‘best’ MTL estimates

At set-up, a selection of parsimonious rules-based ‘models’ are **calibrated** and **back-tested** and the ‘best’ model selected
Margins Based on VaR

- [Dowd and Blake, 2006] - Volatility, Value-at-Risk (VaR), Expected Tail Loss (ETL), Median Tail Loss (MTL), partial moments, etc.

- Margins based on VaR; estimated via EVT [Figlewski, 1984], [Booth et al., 1997], [Broussard and Booth, 1998], [Longin, 1999], [Broussard, 2001], [Cotter, 2001]

- $\alpha\%$ h-day VaR is α-quantile of h-day returns distribution

- Literature review [Abad et al., 2014]
Margins Based on VaR

- VaR is *elicitable* [Gneiting, 2011]

- But is VaR *coherent*?
 - Not always, [Acerbi and Tasche, 2002]
 - Parametric VaR with no numerical error is typically coherent [Daníelsson et al., 2013]

- However, VaR does not represent the extent of losses, should VaR be exceed ⇒ **VaR not suited to margin model**
Why Median Tail Loss (MTL)?

- Expected tail loss (ETL) = expected loss, given $> \text{VaR}$

- ETL is coherent. Advocates: [Acerbi and Tasche, 2002], [Tasche, 2002], [Yamai and Yoshiba, 2005]

- But ETL is not elicitable [Gneiting, 2011]

- The $\alpha\%$ MTL is simply the $(1 + \alpha)/2$ percentile VaR

- Therefore **MTL is representative of the scale of loss, elicitable and coherent** – provided MTL parametric and estimates analytic
Stage 1: MTL Models

- **EWMA:**
 \[
 \hat{\sigma}_t^2 = \zeta \hat{\sigma}_{t-1}^2 + (1 - \zeta) \varepsilon_{t-1}^2, \quad \varepsilon_t = r_t - \bar{r}_t
 \]

- **EGARCH:** [Nelson, 1990]
 \[
 \ln \sigma_t = \beta_0 + g(\varepsilon_{t-1}) + \beta_3 \ln \sigma_{t-1}, \quad \text{with}
 \]
 \[
 g(\varepsilon_t) = \beta_1 \varepsilon_t + \beta_2 (|\varepsilon_t| - E[|\varepsilon_t|]), \quad \varepsilon_t \sim D(0, \sigma_t^2)
 \]

- **GJR-GARCH:** [Glosten et al., 1993]
 \[
 \sigma_t^2 = \beta_0 + \beta_1 \varepsilon_{t-1}^2 + \beta_2 \sigma_{t-1}^2 + \beta_3 I_{\varepsilon_{t-1} < 0} \varepsilon_{t-1}^2
 \]
Stage 2: Margin Re-set Rules Based on Buffer

Margins driven by MTL evolution with periodic jumps.

EMIR (Article 28a) → Base rules on buffer of at least 25%, which may be exhausted when margins increases significantly. Graph below illustrates three possible re-set rules.
Margin Re-set Rules

Margin Rules

- All rules are based on symmetric margin band of width equal to the buffer B above the MTL, i.e.

$$\text{Margin band at time } t = [M_t, (1 + B) M_t], \text{ where } M_t = \text{MTL}_t^{0.99,1}$$

- Boundary hit \Rightarrow margin reset to different level R_t:

<table>
<thead>
<tr>
<th>Rule Label</th>
<th>Reset Level (R_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M^{(1)}$</td>
<td>1.125 M_t</td>
</tr>
<tr>
<td>$M^{(2)}$</td>
<td>$(1 + \beta) M_t$</td>
</tr>
</tbody>
</table>
| $M^{(3)}$ | $(1 + \beta^u) M_t$ if margin falls below M_t
$(1 + \beta^d)(1 + B) M_t$ if margin exceeds $(1 + B) M_t$ |
Margin Re-set Rules

Margin Rule Calibration

- Margin resets follow a process with **correlated jump size and arrival time**

- Focus on stability \rightarrow calibration parameters, e.g. (β^u, β^d) based on **minimizing the variance of this process**

- A standard compound Poisson process $Y_t = \sum_{i=1}^{N_t} X_i$ has i.i.d. jumps sizes $X_i \sim X$, independent of N_t, $t \geq 0$

- Its total variance between time 0 and time t is

$$\mathbb{V} [Y_t] = \mathbb{E} [N_t] \mathbb{E} [X^2]$$
Outline

- **Margining Process:**
 Players, challenges, regulations and SPAN

- **Margin Model:**
 Risk metric (MTL) and parameter-based margin rules

- **Econometric Methodology:**
 Calibration and backtesting of two-stage margin model

- **Empirical Results:**
 On WTI and comparison with SPAN
Summary of New Model Implementation

Stage 1:

1. Calibrate MTL models: MLE
2. Backtest MTL models: [Christoffersen, 1998]
3. Select MTL model(s): [Gneiting and Ranjan, 2011]
4. Check robustness of results: [Hansen et al., 2011]

Stage 2:

1. Use historical estimates on selected MTL model(s) to calibrate margin rule parameters
2. Backtest margin rules
Backtesting MTL

- Backtesting VaR [Kupiec, 1995], [Christoffersen, 1998], [Engle and Manganelli, 2004]

- CCPs exposed to long and short positions simultaneously ⇒ Use the lesser-known [Christoffersen, 1998] two-tailed coverage tests

- $LR^{uc} \sim \chi^2_3$, $LR^{in} \sim \chi^2_4$ and $LR^{cc} \sim \chi^2_6$ respectively
MTL Model Selection

The perfect forecast
The actual forecast

Thematic Semester, Paris
Continuous Ranked Probability Score (CRPS) [Gneiting and Ranjan, 2011]

Figure 1: Continuous Ranked Probability Score (CRPS) is equal to the sum of the squared shaded areas.
Continuous Ranked Probability Score (CRPS)
[Gneiting and Ranjan, 2011]

Figure 2: (Weighted) relative CRPS ⇒ negative value indicates first model better
Robustness Check: Model Confidence Set (MCS) [Hansen et al., 2011]

▶ Extension of Hansen’s SPA in absence of benchmark model

▶ Corrects for data-snooping bias when testing out-performance

▶ Like SPA, MCS uses pair-wise comparison of distribution of 10,000+ performance metrics (CRPS) each based on very large bootstrapped samples

▶ But MCS more computationally intensive, e.g. with 10 models no. pairwise comparisons is about 100,000, each taking 10,000+ repetitions of the bootstrap

▶ Testing down yields a set of superior models which are statistically indistinguishable from each other at a user-specified level of confidence
Outline

▸ Margining Process:
Players, challenges, regulations and SPAN

▸ Margin Model:
Risk metric (MTL) and parameter-based margin rules

▸ Econometric Methodology:
Calibration and backtesting of two-stage margin model

▸ Empirical Results:
On WTI and comparison with SPAN
Energy Futures

<table>
<thead>
<tr>
<th>Rank</th>
<th>Contract</th>
<th>Jan-Dec 2013</th>
<th>Jan-Dec 2014</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brent Crude (ICE)</td>
<td>159,102,103</td>
<td>160,425,461</td>
<td>0.8%</td>
</tr>
<tr>
<td>2</td>
<td>LS Crude, WTI (CME)</td>
<td>147,690,593</td>
<td>145,147,334</td>
<td>-1.7%</td>
</tr>
<tr>
<td>3</td>
<td>HH NG (CME)</td>
<td>84,282,495</td>
<td>74,206,602</td>
<td>-12.0%</td>
</tr>
<tr>
<td>4</td>
<td>Coke (DCE)</td>
<td>115,306,637</td>
<td>63,688,294</td>
<td>-44.8%</td>
</tr>
<tr>
<td>5</td>
<td>Coking Coal (DCE)</td>
<td>34,259,550</td>
<td>57,605,436</td>
<td>68.1%</td>
</tr>
<tr>
<td>6</td>
<td>Gasoil (ICE)</td>
<td>64,000,861</td>
<td>52,800,084</td>
<td>-17.5%</td>
</tr>
<tr>
<td>7</td>
<td>NYH RBOB (CME)</td>
<td>34,470,288</td>
<td>34,421,866</td>
<td>-0.1%</td>
</tr>
<tr>
<td>8</td>
<td>HO No.2 (CME)</td>
<td>32,749,553</td>
<td>33,946,420</td>
<td>3.7%</td>
</tr>
<tr>
<td>9</td>
<td>WTI Crude (ICE)</td>
<td>36,111,163</td>
<td>31,600,959</td>
<td>-12.5%</td>
</tr>
</tbody>
</table>

Top ten traded energy futures by contracts traded:

Thematic Semester, Paris
WTI Crude Oil Futures

30-day synthetic WTI crude oil futures daily returns
Nov 1989 – Dec 2014
Stage 1

- Calibrate GARCH parameters for the first sample period (In our case, Jan 1990 - Dec 1995)
- Roll the sample forward daily, re-estimating all parameters to generate a series of 1-day 99% MTL forecasts for the risk model out-of-sample period (In our case, Jan 1995 - Dec 2008)
- Backtesting, Selection, Robustness
Backtesting: Coverage Results

<table>
<thead>
<tr>
<th>Code</th>
<th>Volatility</th>
<th>Error</th>
<th>UC</th>
<th>IND</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>GARCH</td>
<td>Student t</td>
<td>0.270</td>
<td>7.645</td>
<td>7.915</td>
</tr>
<tr>
<td>II</td>
<td>GARCH</td>
<td>normal</td>
<td>9.574</td>
<td>12.970</td>
<td>22.544</td>
</tr>
<tr>
<td>III</td>
<td>EGARCH</td>
<td>Student t</td>
<td>0.526</td>
<td>4.000</td>
<td>4.526</td>
</tr>
<tr>
<td>IV</td>
<td>EGARCH</td>
<td>normal</td>
<td>7.082</td>
<td>10.543</td>
<td>17.625</td>
</tr>
<tr>
<td>V</td>
<td>GJR</td>
<td>Student t</td>
<td>0.526</td>
<td>4.000</td>
<td>4.526</td>
</tr>
<tr>
<td>VI</td>
<td>GJR</td>
<td>normal</td>
<td>8.044</td>
<td>10.283</td>
<td>18.327</td>
</tr>
</tbody>
</table>

Rejection at 95% (99%) level indicated by red (dark red)

EWMA smoothing constants $\neq 0.96$ reject nulls with even greater confidence
Selection: CRPS Results

Symmetric: CRPS weights ($\phi, 1 - \phi$)

<table>
<thead>
<tr>
<th>No Weight</th>
<th>Volatility</th>
<th>Error</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>GARCH</td>
<td>Student t</td>
<td>$-$</td>
<td>-3.08</td>
<td>0.14</td>
<td>-1.72</td>
<td>1.25</td>
<td>-2.08</td>
</tr>
<tr>
<td>II</td>
<td>GARCH</td>
<td>normal</td>
<td>3.08</td>
<td>$-$</td>
<td>2.63</td>
<td>1.16</td>
<td>3.39</td>
<td>0.81</td>
</tr>
<tr>
<td>III</td>
<td>EGARCH</td>
<td>Student t</td>
<td>-0.14</td>
<td>-2.63</td>
<td>$-$</td>
<td>-2.35</td>
<td>1.12</td>
<td>-2.26</td>
</tr>
<tr>
<td>IV</td>
<td>EGARCH</td>
<td>normal</td>
<td>1.72</td>
<td>-1.16</td>
<td>2.35</td>
<td>$-$</td>
<td>2.65</td>
<td>-0.75</td>
</tr>
<tr>
<td>V</td>
<td>GJR</td>
<td>Student t</td>
<td>-1.25</td>
<td>-3.39</td>
<td>-1.12</td>
<td>-2.65</td>
<td>$-$</td>
<td>-3.16</td>
</tr>
<tr>
<td>VI</td>
<td>GJR</td>
<td>normal</td>
<td>2.08</td>
<td>-0.81</td>
<td>2.26</td>
<td>0.75</td>
<td>3.16</td>
<td>$-$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Both Tails</th>
<th>Volatility</th>
<th>Error</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>GARCH</td>
<td>Student t</td>
<td>$-$</td>
<td>-2.94</td>
<td>0.11</td>
<td>-1.29</td>
<td>1.27</td>
<td>-1.73</td>
</tr>
<tr>
<td>II</td>
<td>GARCH</td>
<td>normal</td>
<td>2.94</td>
<td>$-$</td>
<td>2.36</td>
<td>1.22</td>
<td>3.20</td>
<td>0.89</td>
</tr>
<tr>
<td>III</td>
<td>EGARCH</td>
<td>Student t</td>
<td>-0.11</td>
<td>-2.36</td>
<td>$-$</td>
<td>-1.97</td>
<td>1.18</td>
<td>-1.93</td>
</tr>
<tr>
<td>VI</td>
<td>EGARCH</td>
<td>normal</td>
<td>1.29</td>
<td>-1.22</td>
<td>1.97</td>
<td>$-$</td>
<td>2.30</td>
<td>-0.74</td>
</tr>
<tr>
<td>V</td>
<td>GJR</td>
<td>Student t</td>
<td>-1.27</td>
<td>-3.20</td>
<td>-1.18</td>
<td>-2.30</td>
<td>$-$</td>
<td>-3.00</td>
</tr>
<tr>
<td>VI</td>
<td>GJR</td>
<td>normal</td>
<td>1.73</td>
<td>-0.89</td>
<td>1.93</td>
<td>0.74</td>
<td>3.00</td>
<td>$-$</td>
</tr>
</tbody>
</table>
Selection: CRPS Results

Asymmetric: CRPS weights ($\Phi, 1 - \Phi$)

<table>
<thead>
<tr>
<th>Right Tail</th>
<th>Volatility</th>
<th>Error</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>GARCH</td>
<td>Student t</td>
<td>–</td>
<td>-0.94</td>
<td>1.56</td>
<td>0.76</td>
<td>1.18</td>
<td>-0.22</td>
</tr>
<tr>
<td>II</td>
<td>GARCH</td>
<td>normal</td>
<td>0.94</td>
<td>–</td>
<td>1.79</td>
<td>2.28</td>
<td>1.43</td>
<td>1.12</td>
</tr>
<tr>
<td>III</td>
<td>EGARCH</td>
<td>Student t</td>
<td>-1.56</td>
<td>-1.79</td>
<td>–</td>
<td>-0.23</td>
<td>-0.85</td>
<td>-1.24</td>
</tr>
<tr>
<td>IV</td>
<td>EGARCH</td>
<td>normal</td>
<td>-0.76</td>
<td>-2.28</td>
<td>0.23</td>
<td>–</td>
<td>-0.25</td>
<td>-1.95</td>
</tr>
<tr>
<td>V</td>
<td>GJR</td>
<td>Student t</td>
<td>-1.18</td>
<td>-1.43</td>
<td>0.85</td>
<td>0.25</td>
<td>–</td>
<td>-0.89</td>
</tr>
<tr>
<td>VI</td>
<td>GJR</td>
<td>normal</td>
<td>0.22</td>
<td>-1.12</td>
<td>1.24</td>
<td>1.95</td>
<td>0.89</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Left Tail</th>
<th>Volatility</th>
<th>Error</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>GARCH</td>
<td>Student t</td>
<td>–</td>
<td>-3.20</td>
<td>-1.28</td>
<td>-2.90</td>
<td>0.52</td>
<td>-2.42</td>
</tr>
<tr>
<td>II</td>
<td>GARCH</td>
<td>normal</td>
<td>3.20</td>
<td>–</td>
<td>1.58</td>
<td>-0.66</td>
<td>3.01</td>
<td>0.06</td>
</tr>
<tr>
<td>III</td>
<td>EGARCH</td>
<td>Student t</td>
<td>1.28</td>
<td>-1.58</td>
<td>–</td>
<td>-2.78</td>
<td>2.29</td>
<td>-1.62</td>
</tr>
<tr>
<td>IV</td>
<td>EGARCH</td>
<td>normal</td>
<td>2.90</td>
<td>0.66</td>
<td>2.78</td>
<td>–</td>
<td>3.77</td>
<td>1.00</td>
</tr>
<tr>
<td>V</td>
<td>GJR</td>
<td>Student t</td>
<td>-0.52</td>
<td>-3.01</td>
<td>-2.29</td>
<td>-3.77</td>
<td>–</td>
<td>-3.36</td>
</tr>
<tr>
<td>VI</td>
<td>GJR</td>
<td>normal</td>
<td>2.42</td>
<td>-0.06</td>
<td>1.62</td>
<td>-1.00</td>
<td>3.36</td>
<td>–</td>
</tr>
</tbody>
</table>
Robustness: MCS Results

Models in 25% or higher MCS should confirm CRPS results
⇒ same tail-weight combinations as in CRPS tests
Best model p-value = 1.00
All models with a p-value > 0.25 lie in the 25% MCS

<table>
<thead>
<tr>
<th>Error</th>
<th>Volatility</th>
<th>No Weight</th>
<th>Left Tail</th>
<th>Right Tail</th>
<th>Both Tails</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>t-GARCH</td>
<td>0.670</td>
<td>0.893</td>
<td>0.716</td>
<td>0.874</td>
</tr>
<tr>
<td>II</td>
<td>Normal GARCH</td>
<td>0.146</td>
<td>0.203</td>
<td>0.602</td>
<td>0.276</td>
</tr>
<tr>
<td>III</td>
<td>t-EGARCH</td>
<td>0.291</td>
<td>0.472</td>
<td>0.716</td>
<td>0.596</td>
</tr>
<tr>
<td>IV</td>
<td>Normal-EGARCH</td>
<td>0.155</td>
<td>0.014</td>
<td>1.00</td>
<td>0.383</td>
</tr>
<tr>
<td>V</td>
<td>t-GJR</td>
<td>1.00</td>
<td>1.00</td>
<td>0.716</td>
<td>1.00</td>
</tr>
<tr>
<td>VI</td>
<td>Normal-GJR</td>
<td>0.146</td>
<td>0.061</td>
<td>0.686</td>
<td>0.284</td>
</tr>
</tbody>
</table>

MCS p-values. Blue belongs to 25% MCS
Stage 1: Conclusions

- [Christoffersen, 1998] Best backtests: Student t, EGARCH or GJR

- [Gneiting, 2011] Best CRPS: Student t, EGARCH or GJR

- [Gneiting and Ranjan, 2011] Models in 25% MCS: GARCH, EGARCH or GJR with Student t innovations

- Models III and V taken to Stage 2
 - Student t innovations
 - EGARCH and GJR conditional variance processes
Stage 2: Margin Rule Implementation Procedure

- Calibrate MTL models III and V, sample Jan 1995 - Dec 2008
- Forecast a time series for each 1-day 99% MTL
- Calibrate margin rule parameters for each MTL
- Apply the same margin parameters out-of-sample (Jan 2009 - Dec 2014) and compare margins with SPAN over this period
Margin Model Stability

<table>
<thead>
<tr>
<th></th>
<th>CPP Variance</th>
<th>No. Exceedances</th>
<th>Average Exceedance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upper tail</td>
<td>Lower tail</td>
<td>Upper tail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower tail</td>
</tr>
<tr>
<td>SPAN</td>
<td>13.622</td>
<td>13.622</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>9.763</td>
<td>9.763</td>
<td>4</td>
</tr>
<tr>
<td>Model III:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student-t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGARCH</td>
<td>142.938</td>
<td>142.938</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>112.485</td>
<td>112.485</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>11.274</td>
<td>11.274</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>69.288</td>
<td>69.288</td>
<td>4</td>
</tr>
<tr>
<td>Model III:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student-t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GJR</td>
<td>197.546</td>
<td>197.546</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>160.761</td>
<td>160.761</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>23.556</td>
<td>23.556</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>93.342</td>
<td>93.342</td>
<td>4</td>
</tr>
</tbody>
</table>

CPP variance, number of margin exceedances and average exceedances for each margin rule according to MTL models III and IV. Out-of-sample period: Jan 2009 - Dec 2014. CPP variance in 2. Average exceedances denoted in $ per bbl.
Margin Evolution Out-of-Sample

Out-of-sample margins for the 30-day synthetic WTI futures (Jan 2009 - Dec 2014).
Based on Student t-EGARCH model

Thematic Semester, Paris
Summary

- Parsimonious two-stage margin calibration process seeks to address current challenges for CPPs and regulators.
- Parametric MTL models preferred \leftarrow elicitable, sub-additive and reflect average extreme loss.
- Preliminary results \Rightarrow 25% buffer can provide foundation for parsimonious model which generates margins as stable as ICE historical SPAN.
- Extension to multivariate framework: aggregated MTL should incorporate term-structure and cross-product correlations.
- Next step: calibrate margin rules based on minimizing variance of coupled CTRW.
Stage 2

Stage 2

Clearing margin system in the futures markets–applying the value-at-risk model to taiwanese data.

Evaluating interval forecasts.

Margin exceedences for european stock index futures using extreme value theory.

Extreme spectral risk measures: An application to futures clearinghouse margin requirements.

Fat tails, var and subadditivity.

After var: The theory, estimation, and insurance applications of quantile-based risk measures.

CAViaR.

Prudential margin policy in a futures-style settlement system.

Margins and market integrity: Margin setting for stock index futures and options.

On the relation between the expected value and the volatility of nominal excess return on stocks.
Stage 2

Making and evaluating point forecasts.

Comparing density forecasts using threshold-and quantile-weighted scoring rules.
Journal of Business & Economic Statistics.

The model confidence set.

Techniques for verifying the accuracy of risk measurement models.
The Journal of Derivatives, 3(2).

Regulatory competition and the efficiency of alternative derivative product margining systems.
Journal of Futures Markets, 16(8):943–968.

Stage 2

Longin, F. M. (1999).

Nelson, D. B. (1990).

Shanker, L. and Balakrishnan, N. (2005).

Tasche, D. (2002).

Yamai, Y. and Yoshiba, T. (2005).