Variance Risk Premia in Commodity Markets

Marcel Prokopczuk
Leibniz University Hannover

&

Chardin Wese Simen
University of Reading

Thematic Semester on Commodity Derivatives Markets

Closing Conference
6th November 2015, Palais Brongniart, Paris
New: Journal of Commodity Markets
2016 Commodity Markets Conference

• Date and location: 3-4 June at Hannover

• Keynote Speakers:
 • Geert Rouwenhorst (Yale University)
 • Eduardo Schwartz (UCLA)

• paper submission until 31 Jan 2016:
 submission@fmt.uni-hannover.de

• More info:
 www.fmt.uni-hannover.de/conference_en.html
Motivation and Contribution

- Proliferation of commodity volatility instruments: corn, crude oil, gold, soybeans and wheat
- Facilitate the trading of commodity volatility risk
Motivation and Contribution

- Proliferation of commodity volatility instruments: corn, crude oil, gold, soybeans and wheat
- Facilitate the trading of commodity volatility risk

Questions:
Motivation and Contribution

- Proliferation of commodity volatility instruments: corn, crude oil, gold, soybeans and wheat
- Facilitate the trading of commodity volatility risk

Questions:

1. Do commodity investors require a variance risk premium (VRP)?
Motivation and Contribution

- Proliferation of commodity volatility instruments: corn, crude oil, gold, soybeans and wheat
- Facilitate the trading of commodity volatility risk

Questions:
1. Do commodity investors require a variance risk premium (VRP)?
2. What are the time-series dynamics of commodity VRP?
Motivation and Contribution

- Proliferation of commodity volatility instruments: corn, crude oil, gold, soybeans and wheat
- Facilitate the trading of commodity volatility risk

Questions:

1. Do commodity investors require a variance risk premium (VRP)?
2. What are the time-series dynamics of commodity VRP?
3. How do commodity VRP relate to equity and bond VRP?

⇒ Implications for asset allocation, derivatives pricing and risk management
Motivation and Contribution

- Proliferation of commodity volatility instruments: corn, crude oil, gold, soybeans and wheat
- Facilitate the trading of commodity volatility risk

Questions:

1. Do commodity investors require a variance risk premium (VRP)?
2. What are the time-series dynamics of commodity VRP?
3. How do commodity VRP relate to equity and bond VRP?
4. Are commodity VRP different from traditional risk premia?
Motivation and Contribution

- Proliferation of commodity volatility instruments: corn, crude oil, gold, soybeans and wheat
- Facilitate the trading of commodity volatility risk

Questions:

1. Do commodity investors require a variance risk premium (VRP)?
2. What are the time-series dynamics of commodity VRP?
3. How do commodity VRP relate to equity and bond VRP?
4. Are commodity VRP different from traditional risk premia?

⇒ Implications for asset allocation, derivatives pricing and risk management
Methodology

1. **Parametric Approach**

 Specified as a variable in a stochastic volatility model (Broadie et al., 2007)
Methodology

1. **Parametric Approach**

 Specified as a variable in a stochastic volatility model (Broadie et al., 2007) \(\Rightarrow \) Joint test of model specification and variance risk premia
Methodology

1. **Parametric Approach**
 Specified as a variable in a stochastic volatility model (Broadie et al., 2007) ⇒ Joint test of model specification and variance risk premia

2. **Semi-Parametric Approach**
Methodology

1. **Parametric Approach**
 Specified as a variable in a stochastic volatility model (Broadie et al., 2007) ⇒ Joint test of model specification and variance risk premia

2. **Semi-Parametric Approach**
 Profitability of a delta-hedged portfolio of options (Bakshi and Kapadia, 2003)
Methodology

1. **Parametric Approach**
 Specified as a variable in a stochastic volatility model (Broadie et al., 2007) \(\Rightarrow\) Joint test of model specification and variance risk premia

2. **Semi-Parametric Approach**
 Profitability of a delta-hedged portfolio of options (Bakshi and Kapadia, 2003) \(\Rightarrow\) Hedging model misspecification risk
Methodology

1. **Parametric Approach**
 Specified as a variable in a stochastic volatility model (Broadie et al., 2007) ⇒ Joint test of model specification and variance risk premia

2. **Semi-Parametric Approach**
 Profitability of a delta-hedged portfolio of options (Bakshi and Kapadia, 2003) ⇒ Hedging model misspecification risk

3. **Model-Free Approach (This paper)**
Methodology

1. **Parametric Approach**
 Specified as a variable in a stochastic volatility model (Broadie et al., 2007) \(\Rightarrow \) Joint test of model specification and variance risk premia

2. **Semi-Parametric Approach**
 Profitability of a delta-hedged portfolio of options (Bakshi and Kapadia, 2003) \(\Rightarrow \) Hedging model misspecification risk

3. **Model-Free Approach (This paper)**
 Estimate variance risk premia as sample average of variance swap payoffs (Carr and Wu, 2009)
Methodology (cont’d)

Estimate the variance risk premium as the sample average of variance swap payoffs (Carr and Wu, 2009):

\[VRP_{t,T} = RV_{t,T} - VSR_{t,T} \]

\[RV_{t,T} = \frac{365}{T - t} \sum_{i=t+1}^{T} \left(\log \frac{F_i,T}{F_{i-1},T} \right)^2 \]

\[VSR_{t,T} = 2e^{rt} \frac{365}{T - t} \left[\int_{0}^{F} \frac{P(K,T)}{K^2} dK + \int_{F}^{+\infty} \frac{C(K,T)}{K^2} dK \right] \]

- \(RV_{t,T} \): Realized variance for the period \([t, T]\)
- \(VSR_{t,T} \): Variance swap rate for the period \([t, T]\)
Data

- Futures and options data on 21 markets:
 1. **Energy**: Crude oil, heating oil and natural gas
 2. **Grains**: Corn, cotton, soybeans, soybean meal, soybean oil, sugar and wheat
 3. **Livestock**: Lean hogs and live cattle
 4. **Metals**: Copper, gold and silver
 5. **Tropical**: Cocoa, Colombian coffee, oats, orange juice, rough rice
 6. **Wood**: Lumber
Data

• Futures and options data on 21 markets:

1. **Energy**: Crude oil, heating oil and natural gas
2. **Grains**: Corn, cotton, soybeans, soybean meal, soybean oil, sugar and wheat
3. **Livestock**: Lean hogs and live cattle
4. **Metals**: Copper, gold and silver
5. **Tropical**: Cocoa, Colombian coffee, oats, orange juice, rough rice
6. **Wood**: Lumber

• American options
Data

- Futures and options data on 21 markets:
 1. **Energy**: Crude oil, heating oil and natural gas
 2. **Grains**: Corn, cotton, soybeans, soybean meal, soybean oil, sugar and wheat
 3. **Livestock**: Lean hogs and live cattle
 4. **Metals**: Copper, gold and silver
 5. **Tropical**: Cocoa, Colombian coffee, oats, orange juice, rough rice
 6. **Wood**: Lumber

- American options

- Daily settlement prices
Data

- Futures and options data on 21 markets:
 1. **Energy**: Crude oil, heating oil and natural gas
 2. **Grains**: Corn, cotton, soybeans, soybean meal, soybean oil, sugar and wheat
 3. **Livestock**: Lean hogs and live cattle
 4. **Metals**: Copper, gold and silver
 5. **Tropical**: Cocoa, Colombian coffee, oats, orange juice, rough rice
 6. **Wood**: Lumber

- American options
- Daily settlement prices
- Data source: Commodity Research Bureau
<table>
<thead>
<tr>
<th>Sector</th>
<th>Commodity</th>
<th>Start</th>
<th>End</th>
<th>Days</th>
<th>Calls</th>
<th>Puts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>Crude Oil</td>
<td>1989</td>
<td>2011</td>
<td>5,640</td>
<td>27</td>
<td>22</td>
</tr>
<tr>
<td>Energy</td>
<td>Heating Oil</td>
<td>1989</td>
<td>2011</td>
<td>5,660</td>
<td>29</td>
<td>24</td>
</tr>
<tr>
<td>Energy</td>
<td>Natural Gas</td>
<td>1992</td>
<td>2011</td>
<td>4,740</td>
<td>51</td>
<td>27</td>
</tr>
<tr>
<td>Grains</td>
<td>Corn</td>
<td>1989</td>
<td>2011</td>
<td>5,691</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>Grains</td>
<td>Cotton</td>
<td>1990</td>
<td>2007</td>
<td>4,449</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Grains</td>
<td>Soybeans</td>
<td>1989</td>
<td>2011</td>
<td>5,692</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>Grains</td>
<td>Soybean Meal</td>
<td>1989</td>
<td>2011</td>
<td>5,686</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Grains</td>
<td>Soybean Oil</td>
<td>1989</td>
<td>2011</td>
<td>5,651</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>Grains</td>
<td>Sugar</td>
<td>1990</td>
<td>2011</td>
<td>5,372</td>
<td>26</td>
<td>17</td>
</tr>
<tr>
<td>Grains</td>
<td>Wheat</td>
<td>1989</td>
<td>2011</td>
<td>5,692</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>Livestock</td>
<td>Lean Hogs</td>
<td>1985</td>
<td>2011</td>
<td>6,612</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Livestock</td>
<td>Live Cattle</td>
<td>1984</td>
<td>2011</td>
<td>6,630</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>Metals</td>
<td>Copper</td>
<td>1989</td>
<td>2011</td>
<td>5,461</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Metals</td>
<td>Gold</td>
<td>1989</td>
<td>2011</td>
<td>5,704</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>Metals</td>
<td>Silver</td>
<td>1989</td>
<td>2011</td>
<td>5,673</td>
<td>24</td>
<td>32</td>
</tr>
<tr>
<td>Tropical</td>
<td>Cocoa</td>
<td>1990</td>
<td>2011</td>
<td>5,384</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Tropical</td>
<td>Colombian Coffee</td>
<td>1990</td>
<td>2011</td>
<td>5,390</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>Tropical</td>
<td>Oats</td>
<td>1990</td>
<td>2011</td>
<td>5,344</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Tropical</td>
<td>Orange Juice</td>
<td>1990</td>
<td>2011</td>
<td>5,370</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Tropical</td>
<td>Rough Rice</td>
<td>1992</td>
<td>2011</td>
<td>4,832</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Wood</td>
<td>Lumber</td>
<td>1987</td>
<td>2010</td>
<td>5,680</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>
Example of Selected Commodities

- Crude Oil
- Wheat
- Live Cattle
- Copper
- Cocoa
- Lumber
Is Variance Risk Priced in Commodity Markets?

Sample average of variance swap payoffs: $RV_{t,T} - VSR_{t,T}$

<table>
<thead>
<tr>
<th></th>
<th>Sig</th>
<th>Neg</th>
<th>Pos</th>
<th>Min</th>
<th>Max</th>
<th>Min SR</th>
<th>Max SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90-day</td>
<td>19/21</td>
<td>16/19</td>
<td>3/19</td>
<td>−9.1%</td>
<td>4.3%</td>
<td>2%</td>
<td>35%</td>
</tr>
<tr>
<td>60-day</td>
<td>18/21</td>
<td>17/18</td>
<td>1/18</td>
<td>−10%</td>
<td>2.6%</td>
<td>9.4%</td>
<td>66%</td>
</tr>
</tbody>
</table>

⇒ Yes!
⇒ Mainly negative VRP
⇒ High cross-sectional variation
⇒ Sizeable Sharpe ratios

M. Prokopczuk
Is Variance Risk Priced in Commodity Markets?

Sample average of variance swap payoffs: $RV_{t,T} - VSR_{t,T}$

<table>
<thead>
<tr>
<th>VRP</th>
<th>Sig</th>
<th>Neg</th>
<th>Pos</th>
<th>Min</th>
<th>Max</th>
<th>Min SR</th>
<th>Max SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-day</td>
<td>19/21</td>
<td>16/19</td>
<td>3/19</td>
<td>-9.1%</td>
<td>4.3%</td>
<td>2%</td>
<td>35%</td>
</tr>
<tr>
<td>60-day</td>
<td>18/21</td>
<td>17/18</td>
<td>1/18</td>
<td>-10%</td>
<td>2.6%</td>
<td>9.4%</td>
<td>66%</td>
</tr>
</tbody>
</table>

⇒ Yes!
Is Variance Risk Priced in Commodity Markets?

Sample average of variance swap payoffs: $RV_{t,T} - VSR_{t,T}$

<table>
<thead>
<tr>
<th></th>
<th>Sig</th>
<th>Neg</th>
<th>Pos</th>
<th>Min</th>
<th>Max</th>
<th>Min SR</th>
<th>Max SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRP</td>
<td>90-day</td>
<td>19/21</td>
<td>16/19</td>
<td>3/19</td>
<td>−9.1%</td>
<td>4.3%</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>60-day</td>
<td>18/21</td>
<td>17/18</td>
<td>1/18</td>
<td>−10%</td>
<td>2.6%</td>
<td>9.4%</td>
</tr>
</tbody>
</table>

⇒ Yes!

⇒ Mainly negative VRP
Is Variance Risk Priced in Commodity Markets?

Sample average of variance swap payoffs: $RV_{t,T} - VSR_{t,T}$

<table>
<thead>
<tr>
<th>VRP</th>
<th>Sig</th>
<th>Neg</th>
<th>Pos</th>
<th>Min</th>
<th>Max</th>
<th>Min SR</th>
<th>Max SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-day</td>
<td>19/21</td>
<td>16/19</td>
<td>3/19</td>
<td>$-9.1%$</td>
<td>4.3%</td>
<td>2%</td>
<td>35%</td>
</tr>
<tr>
<td>60-day</td>
<td>18/21</td>
<td>17/18</td>
<td>1/18</td>
<td>$-10%$</td>
<td>2.6%</td>
<td>9.4%</td>
<td>66%</td>
</tr>
</tbody>
</table>

⇒ Yes!

⇒ Mainly negative VRP

⇒ High cross-sectional variation
Is Variance Risk Priced in Commodity Markets?

Sample average of variance swap payoffs: $RV_{t,T} - VSR_{t,T}$

<table>
<thead>
<tr>
<th>VRP</th>
<th>Sig</th>
<th>Neg</th>
<th>Pos</th>
<th>Min</th>
<th>Max</th>
<th>Min SR</th>
<th>Max SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-day</td>
<td>19/21</td>
<td>16/19</td>
<td>3/19</td>
<td>$-9.1%$</td>
<td>4.3%</td>
<td>2%</td>
<td>35%</td>
</tr>
<tr>
<td>60-day</td>
<td>18/21</td>
<td>17/18</td>
<td>1/18</td>
<td>$-10%$</td>
<td>2.6%</td>
<td>9.4%</td>
<td>66%</td>
</tr>
</tbody>
</table>

\Rightarrow Yes!

\Rightarrow Mainly negative VRP

\Rightarrow High cross-sectional variation

\Rightarrow Sizeable Sharpe ratios
Is the Variance Risk Premium a Recent Phenomenon?

Pre-Financialization: Before Dec 2004

<table>
<thead>
<tr>
<th>VRP</th>
<th>Sig</th>
<th>Neg</th>
<th>Pos</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-day</td>
<td>17/21</td>
<td>14/17</td>
<td>3/17</td>
<td>−8.3%</td>
<td>3.6%</td>
</tr>
<tr>
<td>60-day</td>
<td>18/21</td>
<td>16/18</td>
<td>2/18</td>
<td>−9.2%</td>
<td>2.8%</td>
</tr>
</tbody>
</table>
Is the Variance Risk Premium a Recent Phenomenon?

Pre-Financialization: Before Dec 2004

<table>
<thead>
<tr>
<th></th>
<th>Sig</th>
<th>Neg</th>
<th>Pos</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-day</td>
<td>17/21</td>
<td>14/17</td>
<td>3/17</td>
<td>−8.3%</td>
<td>3.6%</td>
</tr>
<tr>
<td>60-day</td>
<td>18/21</td>
<td>16/18</td>
<td>2/18</td>
<td>−9.2%</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

Financialization: After Dec 2004

<table>
<thead>
<tr>
<th></th>
<th>Sig</th>
<th>Neg</th>
<th>Pos</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-day</td>
<td>15/20</td>
<td>14/15</td>
<td>1/15</td>
<td>−10.3%</td>
<td>6.1%</td>
</tr>
<tr>
<td>60-day</td>
<td>16/20</td>
<td>15/16</td>
<td>1/16</td>
<td>−11.8%</td>
<td>1.5%</td>
</tr>
</tbody>
</table>
Is the Variance Risk Premium a Recent Phenomenon?

Pre-Financialization: Before Dec 2004

<table>
<thead>
<tr>
<th></th>
<th>Sig</th>
<th>Neg</th>
<th>Pos</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRP 90-day</td>
<td>17/21</td>
<td>14/17</td>
<td>3/17</td>
<td>-8.3%</td>
<td>3.6%</td>
</tr>
<tr>
<td>VRP 60-day</td>
<td>18/21</td>
<td>16/18</td>
<td>2/18</td>
<td>-9.2%</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

Financialization: After Dec 2004

<table>
<thead>
<tr>
<th></th>
<th>Sig</th>
<th>Neg</th>
<th>Pos</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRP 90-day</td>
<td>15/20</td>
<td>14/15</td>
<td>1/15</td>
<td>-10.3%</td>
<td>6.1%</td>
</tr>
<tr>
<td>VRP 60-day</td>
<td>16/20</td>
<td>15/16</td>
<td>1/16</td>
<td>-11.8%</td>
<td>1.5%</td>
</tr>
</tbody>
</table>

⇒ No! Significantly negative VRP in both periods
Are There Commonalities in Commodity VRP? Part I

We compute

1. Within sector correlations
2. Across sector correlations
Are There Commonalities in Commodity VRP? Part I

We compute

1. Within sector correlations
2. Across sector correlations

<table>
<thead>
<tr>
<th>Sector</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>32.83%</td>
</tr>
<tr>
<td>Grains</td>
<td>21.02%</td>
</tr>
<tr>
<td>Livestock</td>
<td>20.07%</td>
</tr>
<tr>
<td>Metals</td>
<td>33.05%</td>
</tr>
<tr>
<td>Tropical</td>
<td>11.48%</td>
</tr>
</tbody>
</table>
Are There Commonalities in Commodity VRP? Part II

Across Sectors

<table>
<thead>
<tr>
<th>Sector</th>
<th>Energy</th>
<th>Grains</th>
<th>Livestock</th>
<th>Metals</th>
<th>S&P500</th>
<th>Treasury</th>
<th>Tropical</th>
<th>Wood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Grains</td>
<td>8.17%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Livestock</td>
<td>11.69%</td>
<td>15.81%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metals</td>
<td>24.23%</td>
<td>10.69%</td>
<td>-7.05%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S&P 500</td>
<td>27.50%</td>
<td>6.57%</td>
<td>16.15%</td>
<td>32.30%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Treasury</td>
<td>21.38%</td>
<td>20.45%</td>
<td>-0.81%</td>
<td>11.90%</td>
<td>51.89%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tropical</td>
<td>17.80%</td>
<td>33.87%</td>
<td>14.39%</td>
<td>13.54%</td>
<td>5.32%</td>
<td>-5.39%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wood</td>
<td>16.33%</td>
<td>6.75%</td>
<td>10.41%</td>
<td>-3.44%</td>
<td>9.43%</td>
<td>15.91%</td>
<td>12.13%</td>
<td>-</td>
</tr>
</tbody>
</table>

1. Moderate correlations, indicating sizable diversification benefits (SR 37.9%)
2. Moderate comovements between commodity and equity/Treasury VRP

The correlation becomes stronger post 2004!!!
Are There Commonalities in Commodity VRP? Part II

Across Sectors

<table>
<thead>
<tr>
<th>Sector</th>
<th>Energy</th>
<th>Grains</th>
<th>Livestock</th>
<th>Metals</th>
<th>S&P500</th>
<th>Treasury</th>
<th>Tropical</th>
<th>Wood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>-</td>
<td>8.17%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Grains</td>
<td>11.69%</td>
<td>15.81%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Livestock</td>
<td>24.23%</td>
<td>10.69%</td>
<td>-7.05%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metals</td>
<td>27.50%</td>
<td>6.57%</td>
<td>16.15%</td>
<td>32.30%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S&P 500</td>
<td>21.38%</td>
<td>20.45%</td>
<td>-0.81%</td>
<td>11.90%</td>
<td>51.89%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Treasury</td>
<td>17.80%</td>
<td>33.87%</td>
<td>14.39%</td>
<td>13.54%</td>
<td>5.32%</td>
<td>-5.39%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tropical</td>
<td>16.33%</td>
<td>6.75%</td>
<td>10.41%</td>
<td>-3.44%</td>
<td>9.43%</td>
<td>15.91%</td>
<td>12.13%</td>
<td>-</td>
</tr>
</tbody>
</table>

1. Moderate correlations, indicating sizable diversification benefits (SR 37.9%)
Across Sectors

<table>
<thead>
<tr>
<th>Sector</th>
<th>Energy</th>
<th>Grains</th>
<th>Livestock</th>
<th>Metals</th>
<th>S&P500</th>
<th>Treasury</th>
<th>Tropical</th>
<th>Wood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grains</td>
<td>8.17%</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Livestock</td>
<td>11.69%</td>
<td>15.81%</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metals</td>
<td>24.23%</td>
<td>10.69%</td>
<td>-7.05%</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S&P 500</td>
<td>27.50%</td>
<td>6.57%</td>
<td>16.15%</td>
<td>32.30%</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treasury</td>
<td>21.38%</td>
<td>20.45%</td>
<td>-0.81%</td>
<td>11.90%</td>
<td>51.89%</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropical</td>
<td>17.80%</td>
<td>33.87%</td>
<td>14.39%</td>
<td>13.54%</td>
<td>5.32%</td>
<td>-5.39%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Wood</td>
<td>16.33%</td>
<td>6.75%</td>
<td>10.41%</td>
<td>-3.44%</td>
<td>9.43%</td>
<td>15.91%</td>
<td>12.13%</td>
<td>-</td>
</tr>
</tbody>
</table>

1. Moderate correlations, indicating sizable diversification benefits (SR 37.9%)

2. Moderate comovements between commodity and equity/Treasury VRP
Are There Commonalities in Commodity VRP? Part II

Across Sectors

<table>
<thead>
<tr>
<th>Sector</th>
<th>Energy</th>
<th>Grains</th>
<th>Livestock</th>
<th>Metals</th>
<th>S&P500</th>
<th>Treasury</th>
<th>Tropical</th>
<th>Wood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Grains</td>
<td>8.17%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Livestock</td>
<td>11.69%</td>
<td>15.81%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metals</td>
<td>24.23%</td>
<td>10.69%</td>
<td>-7.05%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S&P 500</td>
<td>27.50%</td>
<td>6.57%</td>
<td>16.15%</td>
<td>32.30%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Treasury</td>
<td>21.38%</td>
<td>20.45%</td>
<td>-0.81%</td>
<td>11.90%</td>
<td>51.89%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tropical</td>
<td>17.80%</td>
<td>33.87%</td>
<td>14.39%</td>
<td>13.54%</td>
<td>5.32%</td>
<td>-5.39%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wood</td>
<td>16.33%</td>
<td>6.75%</td>
<td>10.41%</td>
<td>-3.44%</td>
<td>9.43%</td>
<td>15.91%</td>
<td>12.13%</td>
<td>-</td>
</tr>
</tbody>
</table>

1. Moderate correlations, indicating sizable diversification benefits (SR 37.9%)

2. Moderate comovements between commodity and equity/Treasury VRP

⚠️ The correlation becomes stronger post 2004!!!
Are VRP Different from Traditional Risk Premia?

1. Equity Risk Premia: 3 Factor model of Fama and French (1993)

2. Bond Risk Premia: Macro factors (Ludvigson and Ng, 2009) and Cochrane–Piazzesi (2005) factor

3. Commodity Futures Risk Premia: YES! Low explanatory power Commodity VRP are distinct from other risk premia, incl futures risk premia

⇒ Model-free evidence for unspanned stochastic variance in commodity markets
Are VRP Different from Traditional Risk Premia?

1. **Equity Risk Premia:** 3 Factor model of Fama and French (1993)
Are VRP Different from Traditional Risk Premia?

1. **Equity Risk Premia**: 3 Factor model of Fama and French (1993)

2. **Bond Risk Premia**: Macro factors (Ludvigson and Ng, 2009) and Cochrane–Piazzesi (2005) factor
Are VRP Different from Traditional Risk Premia?

1. **Equity Risk Premia:** 3 Factor model of Fama and French (1993)

2. **Bond Risk Premia:** Macro factors (Ludvigson and Ng, 2009) and Cochrane–Piazzesi (2005) factor

3. **Commodity Futures Risk Premia:**
Are VRP Different from Traditional Risk Premia?

1. **Equity Risk Premia:** 3 Factor model of Fama and French (1993)

2. **Bond Risk Premia:** Macro factors (Ludvigson and Ng, 2009) and Cochrane–Piazzesi (2005) factor

3. **Commodity Futures Risk Premia:**

 YES! Low explanatory power
Are VRP Different from Traditional Risk Premia?

1. **Equity Risk Premia:** 3 Factor model of Fama and French (1993)

2. **Bond Risk Premia:** Macro factors (Ludvigson and Ng, 2009) and Cochrane–Piazzesi (2005) factor

3. **Commodity Futures Risk Premia:**

 YES! Low explanatory power

 Commodity VRP are distinct from other risk premia, incl futures risk premia
Are VRP Different from Traditional Risk Premia?

1. **Equity Risk Premia:** 3 Factor model of Fama and French (1993)

2. **Bond Risk Premia:** Macro factors (Ludvigson and Ng, 2009) and Cochrane–Piazzesi (2005) factor

3. **Commodity Futures Risk Premia:**

 YES! Low explanatory power

 Commodity VRP are distinct from other risk premia, incl futures risk premia

 ⇒ Model-free evidence for unspanned stochastic variance in commodity markets
Robustness Checks
Robustness Checks

1. Computation of variance swaps
Robustness Checks

1. Computation of variance swaps
 - Interpolation technique
Robustness Checks

1. Computation of variance swaps
 - Interpolation technique
 - Truncation points of integrals
Robustness Checks

1. Computation of variance swaps
 - Interpolation technique
 - Truncation points of integrals
 - The role of jumps
Robustness Checks

1. Computation of variance swaps
 - Interpolation technique
 - Truncation points of integrals
 - The role of jumps
 - Comparison with existing volatility indices
Robustness Checks

1. Computation of variance swaps
 - Interpolation technique
 - Truncation points of integrals
 - The role of jumps
 - Comparison with existing volatility indices

2. Tradability of variance swaps
Robustness Checks

1. Computation of variance swaps
 - Interpolation technique
 - Truncation points of integrals
 - The role of jumps
 - Comparison with existing volatility indices

2. Tradability of variance swaps
 - Consistently negative VRP across markets and time periods
Robustness Checks

1. Computation of variance swaps
 - Interpolation technique
 - Truncation points of integrals
 - The role of jumps
 - Comparison with existing volatility indices

2. Tradability of variance swaps
 - Consistently negative VRP across markets and time periods
 - Incorporate transaction costs
Robustness Checks

1. Computation of variance swaps
 - Interpolation technique
 - Truncation points of integrals
 - The role of jumps
 - Comparison with existing volatility indices

2. Tradability of variance swaps
 - Consistently negative VRP across markets and time periods
 - Incorporate transaction costs
 - Focus on the most liquid commodity markets
Robustness Checks

1. Computation of variance swaps
 - Interpolation technique
 - Truncation points of integrals
 - The role of jumps
 - Comparison with existing volatility indices

2. Tradability of variance swaps
 - Consistently negative VRP across markets and time periods
 - Incorporate transaction costs
 - Focus on the most liquid commodity markets

3. Seasonality
Robustness Checks

1. Computation of variance swaps
 - Interpolation technique
 - Truncation points of integrals
 - The role of jumps
 - Comparison with existing volatility indices

2. Tradability of variance swaps
 - Consistently negative VRP across markets and time periods
 - Incorporate transaction costs
 - Focus on the most liquid commodity markets

3. Seasonality

4. Non-overlapping samples
In summary, we

• Document significantly negative VRP in most commodity markets
• Find similar results for the pre- and post-financialization sub-periods
• Report increasing commonalities across commodity, equity and bond VRP
• Show that commodity VRP are distinct from traditional risk premia
In summary, we

• Document significantly negative VRP in most commodity markets
• Find similar results for the pre- and post-financialization sub-periods
• Report increasing commonalities across commodity, equity and bond VRP
• Show that commodity VRP are distinct from traditional risk premia
In summary, we

- Document significantly negative VRP in most commodity markets
Conclusion

In summary, we

- Document significantly negative VRP in most commodity markets
- Find similar results for the pre- and post-financialization sub-periods
In summary, we

- Document significantly negative VRP in most commodity markets
- Find similar results for the pre- and post-financialization sub-periods
- Report increasing commonalities across commodity, equity, and bond VRP
In summary, we

- Document significantly negative VRP in most commodity markets
- Find similar results for the pre- and post-financialization sub-periods
- Report increasing commonalities across commodity, equity and bond VRP
- Show that commodity VRP are distinct from traditional risk premia